Prebiotic Evolution of Molecular Assemblies: From Molecules to Ecology

نویسندگان

  • Omer Markovitch
  • Doron Lancet
چکیده

Present life portrays a two-tier phenomenology: molecules compose supramolecular structures, such as cells or organisms, which in turn portray population behaviors, including selection, evolution and ecological dynamics. Prebiotic models have often focused on evolution in populations of self-replicating supramolecules, without explicitly invoking the intermediate molecular-to-supramolecular stage. We explore a prebiotic model that allows one to relate parameters of chemical interaction networks within molecular assemblies to emergent ecological and evolutionary properties in populations of such assemblies. We use the graded autocatalysis replication domain (GARD) model, which simulates the network dynamics of amphipile-containing molecular assemblies, and exhibits quasistationary compositional states termed compotypes. These grow by catalyzed accretion, divide and propagate their compositional information to progeny in a replication-like manner. The model allows us to ask how molecular network parameters influence assembly evolution and population ecology, analyzable by a multi species logistic (r-K) model for population ecology (Lotka-Volterra competition model). We found that compotypes with a larger intrinsic molecular repertoire show a higher intrinsic growth (r) and lower carrying capacity (K), as well as lower replication fidelity. This supports a prebiotic scenario initiated by fast-replicating assemblies with a high molecular diversity, evolving into more faithful replicators with narrower molecular repertoires. A main difference from classical ecology is that in GARD species inter convert into each other rather than consume each other or compete on resources, thus representing ‘fast forward’ of speciation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies.

Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (...

متن کامل

Compositional complementarity and prebiotic ecology in the origin of life.

We hypothesize that life began not with the first self-reproducing molecule or metabolic network, but as a prebiotic ecology of co-evolving populations of macromolecular aggregates (composomes). Each composome species had a particular molecular composition resulting from molecular complementarity among environmentally available prebiotic compounds. Natural selection acted on composomal species ...

متن کامل

Early Systems Biology and Prebiotic Networks

Systems Biology constitutes tools and approaches aimed at deciphering complex biological entities. It is assumed that such complexity arose gradually, beginning from a few relatively simple molecules at life’s inception, and culminating with the emergence of composite multicellular organisms billions of years later. The main point of the present paper is that very early in the evolution of life...

متن کامل

Evolutionary attributes of simulated prebiotic metabolic networks

A metabolism-first scenario for the origin of life entails that as early as replicating entities have emerged prebiotically, they must have constituted relatively complex molecular networks, arising via spontaneous accretion of assemblies of simpler organic molecules. While it is widely accepted that selfcatalysis is a prerequisite for life, considerably less attention has been devoted to netwo...

متن کامل

Trends in Ecology & Evolution Experimental RNA Evolution

The recent ability to select functional RNA molecules through combinatorial chemistry has ignited exobiology research, by offering a set of tools for testing early theories of RNA evolution without the need for organisms. This process can retrieve molecules present in as few as one in 10 sequences, which suggests that careful design may allow ‘resuscitation’ of active RNA molecules that have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013